».

Bmldmg the Mass Storage System at Jefferson. Lab
Ian Blrd Bryan Hess, Andy Kowalslu
' SURA/Jefferson Lab
12000 Jefferson Avenue,
Newport News, VA 23606
Ian.Bird@)jlab.org, Bryan.Hess@jlab.org, Andy Kowalski@jlab.org:: ..
o L tel +1-757-269-6224 C e
fax +1-757-269-6248

Abstract

Thomas Jefferson Nauonal Accelerator Facility (Jefferson Lab) isa U S. Department of
Energy Facility [1] conducting Nuclear Physics experiments that currently have data
collection rates of up to 20 MB/second. Future experiments, however, are expected to
greatly exceed these rates. Post processing and data analysis produce similar-amounts of
data. Both the raw and processed data are stored on tape and need to be easily accessible.

Between data collection _and . processing, the Mass Storage System at Jefferson Lab

currently moVes Over 2 TB of data per day.

Thls paper descnbes the requlrements design, and unplementatlon of the Jeﬂ‘erson Lab
Asynchronous Storage Manager (JASMine), developed to support multi-terabyte per day

/0. JASMine is a lightweight, distributed, scalable, high performance, high capacity

system. It is built around a relational database and is implemented almost entirely in

Java., Asa result -any system that supports a Java Virtual Machine can run JASMine, or

JASMine services, with few if any code changes.

1 Introduction
For | the past few years Jefferson Lab has made use of Open Storage Manager (OSM),

commerc1a1 I-Ilegarchmal ,Storage Manager from Computer Associates to manage data
stored on tape. OSM, however, is no longer supported and has many shortcomings that
limit its performance and scalability. Since it is not a distributed system, all the tape
drives are required to beg connected to a single server, making the server. an I/0
bottleneck ' - . : .

To work around these shortcommgs we have developed a front end and user mterface
The front end, called TapeServer, provides disk cache, cache managers, data staging,

smart scheduling, and multiple OSM server support. The disk caching provided. by the

TapeServer u:nproves the J/O' throughput of the overall system Smart schedulmg
provides a way to pnontlze and limit user requests. Makmg multiple OSM. servers
appear as a single system to the user helps with the centralization of metadata as well as
the ability to add additional tape drives on new systems. Multlple instances of OSM,
however, require additional administration.

It has become essential to ‘replace the functionality of OSM within the TapeServer
software. Although other Mass Storage Systems and Hierarchical Storage Managers

exist, none simply fit into the existing infrastructure and provide the needed functionality.

A lot of the required functionality (disk-cache managers, data staging, and smart




bottlenecks including network interfaces, server 10 boards, processor power, and disk IO.
To elnmnate such bottlenecks the systern must consist of distributed data movers

Distributed data movers will also elimjnate many single points of failure. A crashed data
mover will simply degrade the overall performance of the system instead of halting it all
together.

2.5 Smart Sc_hedulin'g

Access to data cannot always be granted on a first come first served basis. Because tape
mounts take time and reduce the overall throughput of the system, requests. for files on
the same tape should be processed consecutively, while the tape is mounted. While this
will help maximize throughput, it could also lead to job starvation. Therefore, the system
must be able to prevent job starvation by tracking usage by users and hosts. Requests
should first be prioritized by usage and then by available resources.

2.6 Monitoring and Management

System administrators and users need tools to allow them to monitor and react to the
status of the system. Values monitored should include the status of each server and
service, the data rates of each server, resource utilization, and the prediction of request
execution. '

The status of a server or service is either available or not, allowing administrators to
identify downed services easily. The data rates of each service that moves data will show
the throughput of the system as well as identify bottlenecks. Resource utilization will
also identify bottlenecks. caused by insufficient amounts of resources such as disk space
and tape drives. The estimates of request execution time will provide users with an idea
on when they can expect their request to begin execution. This information will also be
used by external systems requiring estimates for the time required to access data. Such
systems could include Gnd apphcatlons

In addltlon to the statlstlcs prov1ded by momtonng, the system must provide a way to
generate statistics from history files or logs. Such information will include the number of
Tequests during a given period of time, the amount of data moved, and the availability of
services and hardware components

eject tapes from the tape hbrary enable/disable data movers, enable/dxsable cache
managers, and mampulateuserrequests

2.7 ErrorIExcepuon Handlmg and Recovery

When an error occurs, the system needs to provide an informative description of the error
and execute an appropriate action to work around the problem. Such action may include
retrying actions, disabling services, disabling the use of certain hardware components, or
alerting administrators of problems.

In the case of a database failure, the system needs to be easily recovered. Procedures for
database and metadata backup and recovery will be required. The metadata must be




3.1 Overview

:

3.2 Storage Objects

Storage objects fall loosely into two-categories: The logical and the physical. Logical
components are organizational constructs while physical components have a concrete
aspect. A Storage object like a tape cartridge has both physical and logical attributes.
The location, type of cassette, and status of the write-protect switch are physical
attributes. The volume group to which a volume belongs and the file metadata contained
on the volume are logical constructs. The union of all the attributes, both physical and
‘logical, is the largest unit in the System, the Store. A store contains tape libraries, drives,
volumes, bitfiles, and other items.

Data Mover .

. Figure 1.

In figure 2 we show the inheritance diagram for Store objects. It may not be immediately
clear why we would establish what is normally taught as an "is-a" relationship between,
say, a BitFile and a Volume. One would not at first glance think that a bitfile "is a"
volume, but consider a second interpretation of the inheritance model. A bitfile has a
need for a superset of the attributes and operations that a volume has, and a bitfile always
resides on a volume. It makes sense then to query a BitFile object for its volume number,
or to ask if it is currently loaded in some tape drive.




classes are declared public and they make use of three privately declared methods,
‘namely refresh(), invalidate(), and needsLoad() that are.defined in every store-derived
‘class. Because they, are private they are not overridden i m subclasses-- should a Bitfile
object call isMissing(), a Volume method, this will in turn call the refresh() private
method in Volume. Should the BitFile object then call getWrzteVolsO a VolumeSet
method, the refresh() that is private to VolumeSet will be called. If the refresh() method
were not private then the overriding would break this nnplementatlon of closures. This is
done so that we can preserve per-table loads from. the database and maintain information
for each table about its cache state even when the object contams caches of several
database tables as a BitFile or Volume object must

3.3 Authentication

The original TapeServer software required all clients to be part of J efferson Lab's central
computing environment and relied on host-based authentication. JASMine exchanges
this. for a framework of pluggable authenticator modules that establish identity on a
network connection before it is returned to the application. . Using these authenticators
provides a low-level security API to establish identity before any other transfer takes
place. For instance, off-site users could be required to authenticate with a username and
password that are encrypted before transmission, but this rigor is not necessary for on-site
transfers between persistent servers, they share authorization information through the
database and need only a permissive authenticator for server-to-server traffic. Other
mechanisms could involve ssh-keys, kerberos, or other single-sign on systems associated
with Grid projects. This pluggable authentication scheme is. applied to java RMI
connections using custom socket factories and in peer-to-peer communication using the
file moving protocol that we describe in section 3.5.1.

3.4:. Tape Label and Data Formats . .

lee most tape storage systems, JASMme makes use. of tape labels Labels allow
systems to verify that the correct tape has been mounted in a drive.. Labels are also used
to gather information required to utilize:a given tape. Such.information would include,
but is not limited to, block size, data. format, and file posmon.

JASMme makes use of ANSI X3. 27-1987 standard labels [4] The ANSI standard
provides a standardized labeling scheme for the interchange of tapes between sites. Most
tape storage systems make use of ANSI labels. Such systems can therefore make use of
tapes created by JASMine. : P

The ANSI X3.27 standard, however, is old. As a result, certain fields in the 80-byte
labels are not large enough to handle the values required by today’s storage systems. For
example, the StorageTek Redwood tapes drives are capable .of using block sizes of 256
KB and cartridges capable of storing 50 GB of data. Such cartridges can easily hold
more than 100,000 files. The block size and file number can thus be too large to fit in
their respectlve fields in the ANSI label definition.

To get around these limitations JASMine specifies zeros in the fields that are too
restrictive and stores the needed information in a hidden JASMine label located afier the
80-byte ANSI label and in a database. The ANSI standard states in section 6.2.1:




minimum and a fast, thread-safe double buffer is used to avoid starvatron of tape drives
under system load. _ . ..

There are other cases where the stream abstraction proves useful ' da

we pass streams through tape formatter objects that completely define th léyout of a
tape. If we need to read an OSM tape or an HPSS tape, we merely choose the correct
tape formatter connecting tape I/O streams to one end and our job to the other . The tape
label is part of the formatter object This is the mechanism used to nnplement AN SI tape
labels

3.5.1 Protocol

There is extensive code reuse in the file-moving portions of the. system Tlns is achreved
by defining a snnple but extensible protocol for file movement. JP, the JASMme file
moving protocol uses. Java serialized objects as messages passed over streams. The
protocol is strictly synchronous to avoid complexity. Interaction follows a basic
message/acknowledgement scheme.  When asynchrony is necessary. additional
connections and protocol instances are created. Multithreading is used to. Keep the
protocol simple while allowing for multiple outstanding requests between servers. For
performance reasons our implementation of JP always falls back to a simple raw data
transfer over tcp when bulk data transfers are made. That is, Java serialized objects are
only used for metadata transmrssron

P mcludes hooks. that allow its behavior to be tightly controlled in three ways. First, an
Authenticator interface is defined to allow for pluggable authentlcatlon Secondly,
pluggable file transfer policy mechanism may be defined to guarantee expected behavior.
As an example, a request only meant to download files will be blocked by policy from
uploading or deleting files. The final means for altering the protocol includes a-hook for
a message dispatcher. This hook allows for protocol extension, and is the way we reuse
the File Movmg code to create Cache Servers, Stage Disks, and interactive FTP-like file
transfer agents. New' messages with hooks into the appropnate database(s) are created
and the whole of the JP code is reused. _ _

3 6 Metadata

Metadata is important to both the user and the system. Users need metadata to determine
‘which file they want and what resources are required to obtain the file., The system uses
metadata to determine wmch tape the file is on and where the file. 1s located on tape.
Therefore, the metadata needs to be accessible without having to read the tape. Three
copies of the metadata are created. They are stored in a database table, on tape along
with the file, and in a flat file, called a stub file, that represents the file to the user.

The metadata consists. of the following information:

Bit File Identification (Unique string of alpha characters and numbers).
Original full path file name.

Owner.

Group.

Permissions.

nhwbh =




manager also returns mformatlonal requests that can be 1mmed1ately satlsﬁed w1thout
queuing; such as _]ob status and system utilization statistics.

For queued requests the scheduler will order them in the database accordmg 0 some
policy, and dispatcher ‘threads will select jobs to run. Subsequent commumcatlon ‘with
the user commands will come from the data mover(s) that turn the requests into _]obs
The request manager w111 not be contacted again after the initial query.

3.9 Scheduler | S
The scheduler is hierarchical. Groups of hosts or users are assigned a single share, These
groups are then divided into subgroups that are assigned shares for that level. Since the

share of the parent group is checked first, the shares assigned to subgroups are eﬁ'ectrvely
sub-shares of the parent group s ‘'share. The result is a hierarchical share tree

‘The shares assigned can be dynamically changed so that resources can be reallocated as
needed. To ensure that requests from certain hosts, like batch farm hosts, are started
promptly, host groups can be created and assigned large share values. This will prevent
farm hosts from sitting idle while waiting for data from the tape library. Smaller share
values can be ass1gned to groups of desktop systems. Similar actions can be taken by
changing user shares.

Two share trees exist. There is one share tree for hosts and one for users. The scheduler
assigns priorities to hosts to prevent the overuse of the tape library by remote mini-farms
and desktop systems for-which the network bandwidth and system efficiency is limited or
not known. Overuse by inefficient systems would have a negative impact on the
Jefferson Lab batch and analysis farms. Priorities are also calculated for the users to
prevent resource hogging. by one or more individuals. :

Each. group, host and user is a551gned a priority. This pnonty is calculated by usmg the
following’ formula e . ,

priority = share /(.01 + (num_a * ACTIVE_WEIGHT) +
(oum_c * COMPLETED_WEIGHT) )

where ACTIVE WEIGHT; and COMPLETED_WEIGHT are configurable parameters.

The value of share is static and assigned to each group, host, or user. The number of

active requests -is represented by num_a. The number of completed requests is
represented by num_c and is calculated for a given time period. The priorities represent

the desired scheduling order for requests from hosts and users based on assigned shares

and usage during that time.

When deciding on the ordering of the requests, the priorities of the host groups are first
considered. This means that a low priority user will have their request dispatched before
a high priority user if the submitting host for the low priority user has a higher priority
than the submitting host used by the high priority user. This is to ensure that individual
user requests from hosts throughout the Jefferson Lab network are not taking data
resources away from the batch and analysis farms.




database may be rephcated L

The terms "cache server” and "cache client" used above need some clarification. A cache
client is a component that initiates the connection; a server is a component that accepts
the connection. Thete .are srtuatlons where one cache server is requu'ed to mltlate a
transfer on behalf of some agent. This third-party copy means a server must also
occasionally act as ‘a chent, not an uncommon occurrence in peer-to-peer networkmg
models. This kind of behav1or requires transitivity of authorization credentlals

The cache management software is the generalization of three distinct uses for disk in the
mass storage system. When we say dlSk, we typically mean a large pool of drsks m some
RAID arrangement. ‘

A first type of disk Storage is the user-invisible stage disk used with data movers as a
buffer in front of tape drives. Files are added and removed from stage disks using a
reference counting algorithm. A file is placed on a disk and its reference count is
incremented for each thread using it. A file is only removed from the stage disk when its
reference count is zero and it has the oldest access time of any file on the disk.

A second type of disk i 1s the least-recently-used file cache. Files are added to this cache
area (from which we get the overall cache disk name) by user request. These disks are
perpetually full and ‘contain a ‘subset of the files stored on tape. These disks aré divided
into organizational groups that usually con‘espond to experiments. When a request is
received by JASMine to add a new file to a group's cache disk space miust first be made
for the new file. This is done by determining the oldest file in the group by access time
and removing it. Thls removal process is repeated until there is enough space for the file
to be added -

ThlS is a relatively heavywelght operatlon. The initiator finds the least recently used file
by performing a JP scatter-gather operation in which each of the cache servers containing
data for a group must independently search and find its least recently used file. This
collection of files is then forwarded to the initiator as the gather portion of the operation.
Since the multiple searches are done in parallel, the search time scales linearly with the -
number of servers. Such a distributed operation is also ripe with opportumtles for race
conditions, requmng careful atteutlon to’ resource reservation.

Either of these first. two types of disk could be used to pre-load data for farm _]obs We -
currently use a sufficiently large LRU disk pool to cache data from tape before we start
batch processing of a job. This is advantageous because jobs are never blocked on our
CPU farm waiting for tape. Qur batch farm system enforces this stagmg makmg more
efficient use of the CPUs

The final use of the disk management software is for persistent data. There are certain
classes of data that are added to a user-accessible area with no intention of removal.
These typically represent the final output of physics data processing. These files, stored
in the silo, are also cached-online with no intention of removing them. For this we define




- reservation and job claiming, which must be done in a more distributed fashion using

clatabase table locking, database atormc mserts ora dlstnbuted lockmg protocol Wthh is
.f mOre complex B

A'drivé can be reserved for readmg only, writing only, use b
a’'select storage group, or some combination of these T 'f_that hlgh pnonty
users’ “can write their data to tape 1mmed1ately upon request,:‘a‘ ive can be reserved as
wnte-only for the volume set that the users are using. “This is s1mply done by mamtammg
reservatlon fields in the database for a given drive. Other components however query
the “drive- manager for drive status. The dispatcher, for example, queries ‘the drive
manager for a list of available drives and their reservations. The dispatcher would then
only start jobs that can make use of the drives available based on:their reservations.

st volume sets, use by

3.11; 22 Drive

The Drive object is responsible for manipulating a loaded tape drive. Tt keeps track of
file position on tape, seeks to a given location on tape, reads and writes data to tape to
and from tape, and ejects a tape from a drive. When a job is passed a Drive object from

the DnveManager it simply uses OutputStreams and InputStreams ﬁ'om the Drive object
to erte and read data to and from tape.

3.11.3 Volume Manager

Volume managers provide the data mover and its components with information about
volumes. This includes the type of volume it is, its location, its state, and its ownership.

‘ The volume manager is also responmble for allocatmg unusod volumes to jobs when they
need them '

3.11 4 ‘Dispatcher

There is one .dispatcher per data mover. It ‘has the responsiblhty to inspect _]ObS in the
Request database, inspect local resources, and then claim. _]obs as 1t _can process them
Roughly, the dispatcher does the followmg' '

Check that job startmg is enabled. ‘
Get the list of available drives from the Drive Manager o

- Check for secure, local disk space.

~ Gét a list of pending requests.

" Claim a drive (if failure, start over at (1)). ‘
Reserve disk space (if failure, release the drive and retumn to ).

- Claim the job(s) (if failure, release disk space, release dnve retum to (1)).
Start the job thread

PN RN

By having a dispatcher on every data mover, the system will not stop dispatching jobs
because of a single system crash or failure. This also cuts down on the amount of
information on available resources a dispatcher must keep track of. The processing
required to determine which job must run next is distributed across the data movers and
thus lessens the CPU resources required by a single dispatcher.




.zparameters that - is correct for the calling machine.-This allows global configuration
changes to be made at a smgle point with no worry that some ch_' t was forgotten

4 Future WorklOutlook

During the development of JASMine, some changes were: suggested based -onlessons
learned from testmg In addition, other projects were started that mﬂuenced the des1gn of
---JASMme ' ‘ ,

‘The metadata stored in OSM needs to be imported into JASMme s0 thatOSM can be
decommissioned. Making use of newer tape drives and replacmg OSM were the driving
forces behind the development of JASMine.

Users have shown an interest in being able to access the data stored on Cache Managers
via standard file copy protocols like fip. To accommodate such, rcquests we will
implement gateways to the Cache Managers that provide user interfaces for standard
protocols to access data stored on them. Gateways will make implementing various
protocols easier and will not require modifications to JASMine itself. These gateways
will also provide external access to Cache Managers hidden behind firewalls. As part of
Jefferson Lab’s involvement in the Particle Physics Data Grid collaboration [5], we will
provide interfaces to permit remote access to data on tape or on the local cache systems.

The naming scheme used to store data files within Cache Managers will be changed to
include the entire full path name of the files original location unless the user provides an
alternate name. This helps lessen the probability of two different files being given the
same full path name for storage on disk. Although this is not a problem for JASMine
~ alone, it might be a problem if the Cache Managers are used to store data for JASMine
and other applications at the same time.

An XML based API will be created and implemented in JASMine. ‘' This will remove the
requirement that clients be written in Java and use RMI or serialized Java objects for
communication.

4.1 Web Clients

Users have shown great interest in having web-based clients that retrieve data files from
JASMine. Such clients will authenticate the user and submit a request fo get file or have
- files placed on a cache disk. In addition, web clients will be created to submit batch jobs
. to the batch farm. Such requests will gather all the required data files on cache disks
before execution begins.

" §  Conclusions

JASMine is a Mass Storage System that will scale to meet the needs of current and future
high data rate experiments at Jefferson Lab. It is a lightweight, distributed, scalable, high
performance, and high capacity system. The distributed and scalable design of JASMine
make it suited to dealing with large volumes of data. The distributed nature of the Data
Movers and Cache Managers are also essential to ensure the overall performance of the
-system. As the system is very modular, components can easily be used in other




